XTerra Columns XTerra MS, Shield RP, and Phenyl Columns combine the best properties of silica- and polymeric-bonded phases with patented Hybrid Particle Technology (HPT), which replaces one out of every three silanol groups with a methyl group during particle synthesis. HPT overcomes the limitations of silica-based materials while maintaining its best attributes for mechanical strength, chemical resistance, and easy scale up from analytical to preparative chromatography. Traditional Silica vs. XTerra Manufacturing Process ## Column Characteristics | | MS C ₁₈ ,
125 Å | Shield RP18,
125 Å | MS C _s ,
125 Å | Shield RP8,
125 Å | Phenyl,
125 Å | |--------------------------|--|--|---|--|---| | | HPLC: 3.5, 5 μm | | Ligand Benefit | General purpose, efficient,
low MS-bleed delivers good
compound retentivity for acids,
bases and neutrals | Highly efficient, provides alternate selectivity compared to straight chain C ₁₈ , particularly with phenolic analytes. Compatible with 100% aqueousphase composition | General purpose,
efficient, low MS-bleed
and similar selectivity to
MS C ₁₈ , but delivers less
compound retentivity | Highly efficient and similar
selectivity to Shield
RP18, but delivers less
compound retentivity | Alternate selectivity versus straight chain MS C_{18} , alternate selectivity, particularly in regard to polyaromatic compounds | | Particle/Ligand | • | • | • | • | • | | Carbon Load* | 15.5% | 15% | 12% | 13.5% | 12% | | Endcapped | Yes | Yes | Yes | Yes | Yes | | USP Class No. | u | LI | L7 | L7 | L11 | | Performance
Standards | Neutrals QC
Reference Material
p/n: <u>186006360</u> | Neutrals QC
Reference Material
p/n: <u>186006360</u> | Neutrals QC
Reference Material
p/n: 186006360 | Neutrals QC
Reference Material
p/n: 186006360 | Neutrals QC
Reference Material
p/n: 186006360 | | Application
Standards | Reversed-Phase QC
Reference Material
p/n: 186006363 | ^{*}Expected or approximate value.